Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation
نویسندگان
چکیده
Plants have evolved developmental mechanisms to ensure reproduction when in sub-optimal local environments. The shade-avoidance syndrome is one such mechanism that causes plants to elongate and accelerate flowering. Plants sense shade via the decreased red:far-red (R:FR) ratio that occurs in shade. We explored natural variation in flowering behavior caused by a decrease in the R:FR ratio of Arabidopsis thaliana accessions. A survey of accessions revealed that most exhibit a vigorous rapid-flowering response in a FR-enriched environment. However, a subset of accessions appeared to be compromised in the accelerated-flowering component of the shade-avoidance response. The genetic basis of the muted response to FR enrichment was studied in three accessions (Fl-1, Hau-0, and Mir-0). For all three accessions, the reduced FR flowering-time effect mapped to the FLOWERING LOCUS T (FT) region, and the FT alleles from these accessions are expressed at a lower level in FR-enriched light compared to alleles from accessions that respond robustly to FR enrichment. In the Mir-0 accession, a second genomic region, which includes CONSTANTS (CO), also influenced flowering in FR-enriched conditions. We have demonstrated that variation in the degree of precocious flowering in shaded conditions (low R:FR ratio) results from allelic variation at FT.
منابع مشابه
Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis.
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simp...
متن کاملMultiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana.
Relating molecular variation to phenotypic diversity is a central goal in evolutionary biology. In Arabidopsis thaliana, FLOWERING LOCUS C (FLC) is a major determinant of variation in vernalization--the acceleration of flowering by prolonged cold. Here, through analysis of 1307 A. thaliana accessions, we identify five predominant FLC haplotypes defined by noncoding sequence variation. Genetic a...
متن کاملAltitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis.
Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of...
متن کاملQuantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation.
Much of the flowering time variation in wild strains of Arabidopsis thaliana is due to allelic variation at two epistatically acting loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC encodes a MADS (MCM1/AGAMOUS/DEFICIENS/SRF1) domain transcription factor that directly represses a series of flowering-promoting genes. FRI and FLC, however, do not explain all of the observed variation, especia...
متن کاملNucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas
Variation in flowering time and response to overwintering has been exploited to breed brassica vegetables that can be harvested year-round. Our knowledge of flowering time control now enables the investigation of the molecular basis of this important variation. Here, we show that a major determinant of heading date variation in Brassica oleracea is from variation in vernalization response throu...
متن کامل